Comparison of unitary exocytic events in pituitary lactotrophs and in astrocytes: modeling the discrete open fusion-pore states

نویسندگان

  • Doron Kabaso
  • Jernej Jorgačevski
  • Ana I. Calejo
  • Ajda Flašker
  • Alenka Guček
  • Marko Kreft
  • Robert Zorec
چکیده

In regulated exocytosis the merger between the vesicle and the plasma membranes leads to the formation of an aqueous channel (a fusion-pore), through which vesicular secretions exit into the extracellular space. A fusion pore was thought to be a short-lived intermediate preceding full-fusion of the vesicle and the plasma membranes (full-fusion exocytosis). However, transient exocytic events were also observed, where the fusion-pore opens and closes, repetitively. Here we asked whether there are different discrete states of the open fusion-pore. Unitary exocytic events were recorded by the high-resolution cell-attached patch-clamp method in pituitary lactotrophs and brain astrocytes. We monitored reversible unitary exocytic events, characterized by an on-step, which is followed by an off-step in membrane capacitance (C m ), a parameter linearly related to the membrane area. The results revealed three categories of reversible exocytic events (transient fusion-pore openings), which do not end with the complete integration of the vesicle membrane into the plasma membrane. These were categorized according to the observed differences in the amplitude and sign of the change in the real (Re) parts of the admittance signals: in case I events (Re ≈ 0) fusion pores are relatively wide; in case II (Re > 0) and case III (Re < 0) events fusion pores are relatively narrow. We show that case III events are more likely to occur for small vesicles, whereas, case II events are more likely to occur for larger vesicles. Case III events were considerably more frequent in astrocytes than in lactotrophs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cAMP-mediated stabilization of fusion pores in cultured rat pituitary lactotrophs.

Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an ele...

متن کامل

Differential Regulation of Granule-to-Granule and Granule-to-Plasma Membrane Fusion during Secretion from Rat Pituitary Lactotrophs

We used fluorescence imaging of individual exocytic events together with electron microscopy to study the regulation of dense core granule-to-plasma membrane fusion and granule-to-granule fusion events that occur during secretion from rat pituitary lactotrophs. Stimulating secretion with elevated extracellular potassium, with the calcium ionophore ionomycin, or with thyrotropin releasing hormon...

متن کامل

Hypotonicity and peptide discharge from a single vesicle.

Neuroendocrine secretory vesicles discharge their cargo in response to a stimulus, but the nature of this event is poorly understood. We studied the release of the pituitary hormone prolactin by hypotonicity, because this hormone also contributes to osmoregulation. In perfused rat lactotrophs, hypotonicity resulted in a transient increase followed by a sustained depression of prolactin release,...

متن کامل

Hyperpolarization-activated cyclic nucleotide-gated channels and cAMP-dependent modulation of exocytosis in cultured rat lactotrophs.

Hormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are a...

متن کامل

Retention and stimulus-dependent recycling of dense core vesicle content in neuroendocrine cells.

We have used fluorescence imaging of individual exocytic events in combination with immunogold electron microscopy and FM1-43 photoconversion to study the stimulus-dependent recycling of dense core vesicle content in isolated rat pituitary lactotrophs. Secretory stimulation with high external [K(+)] resulted in 100 exocytic sites per cell that were labeled by extracellular antibodies against th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013